Recent Results from the PHENIX-Experiment on p+p, Au+Au and d+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

Christian Klein-Bösing
IKP Münster
for the PHENIX Collaboration

Nuclear Physics
Spring Meeting 2004
Köln, March 8th
Recent Results on Hard Probes with the PHENIX-Experiment in Au+Au and d+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

Christian Klein-Bösing
IKP Münster
for the PHENIX Collaboration

Nuclear Physics
Spring Meeting 2004
Köln, March 8th
Particle Production at High p_T

- **General**
 - *Hard* processes: Parton collisions with large Q^2 ("Jets")
 - Factorization:
 - Parton Distr. \otimes pQCD \otimes FF

- **p+p**
 - Fragmentation into QCD-vacuum

- **Au+Au**
 - Early reaction-phase
 - Probe for a later hot and dense phase

- **Medium influences:**
 - "Jet"-like correlations
 - Particle ratios
 - Particle yields
Particle Production at High p_T

- **General**
 - *Hard* processes: Parton collisions with large Q^2 ("Jets")
 - Factorization:
 - Parton Distr. \otimes pQCD \otimes FF

- **p+p**
 - Fragmentation into QCD-vacuum

- **Au+Au**
 - Early reaction-phase
 - Probe for a later hot and dense phase

- **Quantifying medium influence:**
 \[d^2 \]
Nuclear Modification Factor

- Glauber model:
 - AA/dA incoherent superposition of NN
 \[\sigma_{AB}^{\text{hard}} \approx \int d^2 b \sigma_{NN}^{\text{hard}} T_{AB}(b) \]

- Comparison with scaled NN
 - \(R_{AA} \approx 1 \) (for \(p_T > 2 \text{ GeV} \))?
 - Deviation \(\Rightarrow \) medium effects?
Known Effects N→A

- Multiple soft scattering
 - Broadens p_T spectrum
 - Cronin Effect
- Change of the nuclear structure function / PDF
 - Shadowing ($R_{AA} < 1$)
 - Anti-shadowing ($R_{AA} > 1$)
 - Color Glass Condensate ??

Cronin-Effect observed in p+A experiments:
Phenix @ RHIC

- **Central Arms**
 - $|\eta| < 0.35$
 - Calorimetry (PbSc PbGI)
 - Tracking (PC, DC)
 - PID (RICH, TOF)

- **North and South Arms**
 - Muon PID and Tracking

- **Global**
 - Trigger (BBC)
 - Centrality (BBC, ZDC)
Au+Au @ $\sqrt{s_{NN}} = 200$ GeV at Midrapidity

PRL 91,072301 (2003) + high p_T triggered data

nucl-ex/0310005
The Reference

- Good agreement with NLO pQCD
- Sensitive to choice of fragmentation function $D(g \rightarrow \pi)$
- Basis for comparisons in the nuclear modification factor

Poster S. Bathe (HK 14.14)
Peripheral Au+Au Compared to Scaled p+p

consistent with N_{coll} scaling
Central Au+Au Compared to Scaled p+p

factor 5 suppression
One Possible Explanation

- **Jet quenching**
 - Hard scattered partons lose energy via gluon-bremsstrahlung
 - Depends on color charge density
 - Depends on traversed distance in medium (\(\rightarrow\)correlations)

- **Theoretical models**
 - Good quantitativ description within **energy loss** scenario

Comparison to model calculations with and without parton energy loss:

Au+Au at \(\sqrt{s_{NN}} = 200 \text{ GeV}\)

- With parton energy loss
 - Levai
 - Vitev
 - Wang

- Without parton energy loss
 - Wang
But...

Effects of cold nuclear matter ("initial state") at $\sqrt{s_{NN}} = 200$ GeV unknown

Suppression already in d+Au... ...or not?

d+Au needed as reference case:
No produced medium...
The Control Experiment I

\textbf{d+Au @ PHENIX}

- No suppression in d+Au collisions @ $\sqrt{s_{_{NN}}}$ = 200 GeV
 \begin{itemize}
 \item PRL 91, 0723903 (2003)
 \item Similar results from STAR, PHOBOS, BRAHMS
 \end{itemize}

⇒ Initial state effects excluded
d+Au Spectra at Midrapidity

Poster H. Büsching (HK 14.13)

PHENIX preliminary
Centrality Dependence at Midrapidity

Au+Au @ $\sqrt{s_{NN}} = 200$ GeV

80-92%

R_{AA}

charged hadrons
neutral pions

PHENIX

$d+$Au @ $\sqrt{s_{NN}} = 200$ GeV

60-88%

R_{dA}

PHENIX preliminary
Centrality Dependence at Midrapidity

Au+Au @ $\sqrt{s_{NN}} = 200$ GeV

$d+Au @ \sqrt{s_{NN}} = 200$ GeV

50-60%

40-60%
Centrality Dependence at Midrapidity

Au+Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV

R_{AA}

charged hadrons
neutral pions

PHENIX

20-30%

p_T (GeV/c)

0

1

2

0

5

10

d+Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV

R_{dA}

PHENIX preliminary

20-40%

p_T (GeV/c)

0

2

4

6

8

10
Centrality Dependence at Midrapidity

Au+Au @ $\sqrt{s_{NN}} = 200$ GeV

$0-10\%$

$d+Au @ \sqrt{s_{NN}} = 200$ GeV

$0-20\%$

PHENIX preliminary
Centrality Dependence

- Examine nuclear modification at fixed p_T
 - Enhancement in central $d+Au$
 - Suppression in central $Au+Au$
 - Deviation from scaled pp vanishes in peripheral collisions

\Rightarrow Strong medium effects in central $Au+Au$ overcome initial Cronin enhancement
Any Control in Au+Au?

- Strong Final State Interactions should not influence hard electromagnetic probes (in Situ control)
- Photons:
 - Also produced in initial hard scatterings, but no fragmentation
 - Additional production via Bremsstrahlung (and possibly thermal production in QGP)
Search for Direct Photons

- Inclusive Photon spectra dominated by decay γ
- Corrected for:
 - Hadronic contamination
 - Conversion
 - Efficiency
- Determination of background γ needed
 - Mainly from π^0, η
 - Measured π^0, m_T-scaling else
 - Decay in simulation
\(\gamma/\pi^0 \) in p+p

- Comparison to expectation from decays with the \(\gamma/\pi \) double Ratio
 - Many systematics cancel
 - Excess above one indicates photon excess

![Graph showing the ratio \(\gamma/\pi^0 \) as a function of \(p_T \) with measured and expected background data points.](image)
Result in p+p

Consistent with pQCD with large uncertainties
Control II
Direct Photons in Au+Au

Expectation p+p pQCD:

\[1 + \frac{N_{coll} \times \gamma_{pQCD}}{\gamma_{bckgd}(\pi^0_{AuAu})} \]

\[1 + \frac{N_{coll} \times \gamma_{pQCD}}{\gamma_{bckgd}(N_{coll} \times \pi^0_{pp})} \]
Control II
Direct Photons in Au+Au

Expectation $p+p$ pQCD:

$$1 + \frac{N_{coll} \times \gamma_{pQCD}}{\gamma_{bckgd}(\pi_0^{0})}$$
Control II
Direct Photons in Au+Au

Expectation p+p pQCD:

$$1 + \frac{N_{\text{coll}} \times \gamma_{pQCD}}{\gamma_{\text{bckgd}}(\pi_0^{AuAu})}$$
Control II
Direct Photons in Au+Au

Expectation p+p pQCD:

\[1 + \frac{N_{\text{coll}} \times \gamma_{pQCD}}{\gamma_{\text{bckgd}}(\pi^0_{AuAu})} \]
Control II
Direct Photons in Au+Au

Expectation p+p pQCD:

\[1 + \frac{N_{\text{coll}} \times \gamma_{pQCD}}{\gamma_{\text{bckgd}}(\pi^0_{\text{AuAu}})} \]
Control II
Direct Photons in Au+Au

Expectation \(p+p \) pQCD:

\[
1 + \frac{N_{\text{coll}} \times \gamma_{\text{pQCD}}}{\gamma_{\text{bckgd}}(\pi^0_{\text{AuAu}})}
\]
Control II
Direct Photons in Au+Au

Expectation $p+p$ pQCD:
$$1 + \frac{N_{\text{coll}}}{\gamma_{\text{bckgd}}(\pi^0_{\text{AuAu}})} \times \gamma_{\text{pQCD}}$$

First measurement of direct photons at $\sqrt{s_{\text{NN}}} = 200 \text{ GeV}$
Conclusion

- Observation: Suppression of high p_T π^0's and charged hadrons in central Au+Au
 - Suggests medium induced energy loss

- Enhancement/absence of suppression at midrapidity in d+Au
 - As expected from Cronin effect
 - Rules out initial state effects for observed suppression in Au+Au

- Established baseline for the effects of cold nuclear medium at $\sqrt{s_{NN}} = 200$ GeV

- First measurement of direct photons at $\sqrt{s_{NN}} = 200$ GeV
 - Agreement with (scaled) pQCD calculation
 - No suppression of Photons in Au+Au
<table>
<thead>
<tr>
<th>Country</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>University of São Paulo, São Paulo</td>
</tr>
<tr>
<td>China</td>
<td>Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td></td>
<td>China Institute of Atomic Energy, Beijing</td>
</tr>
<tr>
<td></td>
<td>Peking University, Beijing</td>
</tr>
<tr>
<td>France</td>
<td>LPC, University de Clermont-Ferrand, Clermont-Ferrand</td>
</tr>
<tr>
<td></td>
<td>IPN-Orsay, Université Paris Sud, CNRS-IN2P3, Orsay</td>
</tr>
<tr>
<td></td>
<td>LLR, École Polytechnique, CNRS-IN2P3, Palaiseau</td>
</tr>
<tr>
<td>Germany</td>
<td>University of Münster, Münster</td>
</tr>
<tr>
<td>Hungary</td>
<td>Central Research Institute for Physics (KFKI), Budapest</td>
</tr>
<tr>
<td></td>
<td>Debrecen University, Debrecen</td>
</tr>
<tr>
<td></td>
<td>Eötvös Loránd University (ELTE), Budapest</td>
</tr>
<tr>
<td>India</td>
<td>Banaras Hindu University, Banaras</td>
</tr>
<tr>
<td></td>
<td>Bhabha Atomic Research Centre, Bombay</td>
</tr>
<tr>
<td>Israel</td>
<td>Weizmann Institute, Rehovot</td>
</tr>
<tr>
<td>Japan</td>
<td>Center for Nuclear Study, University of Tokyo, Tokyo</td>
</tr>
<tr>
<td></td>
<td>Hiroshima University, Higashi-Hiroshima</td>
</tr>
<tr>
<td></td>
<td>KEK, Institute for High Energy Physics, Tsukuba</td>
</tr>
<tr>
<td></td>
<td>Kyoto University, Kyoto</td>
</tr>
<tr>
<td></td>
<td>Nagasaki Institute of Applied Science, Nagasaki</td>
</tr>
<tr>
<td></td>
<td>RIKEN, Institute for Physical and Chemical Research, Wako</td>
</tr>
<tr>
<td></td>
<td>RIKEN-BNL Research Center, Upton, NY</td>
</tr>
<tr>
<td></td>
<td>Rikkyo University, Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td>Tokyo Institute of Technology, Tokyo</td>
</tr>
<tr>
<td></td>
<td>University of Tsukuba, Tsukuba</td>
</tr>
<tr>
<td></td>
<td>Waseda University, Tokyo</td>
</tr>
<tr>
<td>S. Korea</td>
<td>Cyclotron Application Laboratory, KAERI, Seoul</td>
</tr>
<tr>
<td></td>
<td>Kangnung National University, Kangnung</td>
</tr>
<tr>
<td></td>
<td>Korea University, Seoul</td>
</tr>
<tr>
<td></td>
<td>Myong Ji University, Yongin City</td>
</tr>
<tr>
<td></td>
<td>System Electronics Laboratory, Seoul Nat. University, Seoul</td>
</tr>
<tr>
<td></td>
<td>Yonsei University, Seoul</td>
</tr>
<tr>
<td>Russia</td>
<td>Institute of High Energy Physics, Protovino</td>
</tr>
<tr>
<td></td>
<td>Joint Institute for Nuclear Research, Dubna</td>
</tr>
<tr>
<td></td>
<td>Kurchatov Institute, Moscow</td>
</tr>
<tr>
<td></td>
<td>PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg</td>
</tr>
<tr>
<td></td>
<td>St. Petersburg State Technical University, St. Petersburg</td>
</tr>
<tr>
<td>Sweden</td>
<td>Lund University, Lund</td>
</tr>
<tr>
<td>USA</td>
<td>Abilene Christian University, Abilene, TX</td>
</tr>
<tr>
<td></td>
<td>Brookhaven National Laboratory, Upton, NY</td>
</tr>
<tr>
<td></td>
<td>University of California - Riverside, Riverside, CA</td>
</tr>
<tr>
<td></td>
<td>University of Colorado, Boulder, CO</td>
</tr>
<tr>
<td></td>
<td>Columbia University, Nevis Laboratories, Irvington, NY</td>
</tr>
<tr>
<td></td>
<td>Florida State University, Tallahassee, FL</td>
</tr>
<tr>
<td></td>
<td>Florida Technical University, Melbourne, FL</td>
</tr>
<tr>
<td></td>
<td>Georgia State University, Atlanta, GA</td>
</tr>
<tr>
<td></td>
<td>University of Illinois Urbana Champaign, Urbana-Champaign, IL</td>
</tr>
<tr>
<td></td>
<td>Iowa State University and Ames Laboratory, Ames, IA</td>
</tr>
<tr>
<td></td>
<td>Los Alamos National Laboratory, Los Alamos, NM</td>
</tr>
<tr>
<td></td>
<td>Lawrence Livermore National Laboratory, Livermore, CA</td>
</tr>
<tr>
<td></td>
<td>University of New Mexico, Albuquerque, NM</td>
</tr>
<tr>
<td></td>
<td>New Mexico State University, Las Cruces, NM</td>
</tr>
<tr>
<td></td>
<td>Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY</td>
</tr>
<tr>
<td></td>
<td>Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge National Laboratory, Oak Ridge, TN</td>
</tr>
<tr>
<td></td>
<td>University of Tennessee, Knoxville, TN</td>
</tr>
<tr>
<td></td>
<td>Vanderbilt University, Nashville, TN</td>
</tr>
</tbody>
</table>

*as of January 2004
Backup Slides
Corrections

- Geometrical acceptance
- Detector effects
 - Multiplicity
 - Energy- / position resolution
- Analysis cuts
 - Asymmetrie
 - PID
 - Bad modules

Efficiency:
From embedding of simulated π^0 into real events
π⁰'s @ PHENIX

- **Reconstruction π⁰→2γ**
 - All pair combinations
 - Invariant mass
 \[m_{\text{inv}} = \sqrt{2E_1E_2 (1- \cos \theta)} \approx 135 \text{ MeV} \]
 - Combinatorial background:
 - "Mixed events"
 - \(\gamma_1 \) from current event \(\gamma_2 \) from old event

- **Corrections**
 - Acceptance
 - Efficiency
Charged Particles @ PHENIX

- Tracking in west arm
 - Momentum reconstruction with BBC, PC1 and DC
- Background rejection
 - Matching PC2 and PC3 hits
 - Remaining background:
 - Conversions and decays
 - Determined and subtracted statistically
- Corrections
 - Acceptance, decay in flight
 - Efficiency
π^0 Peaks

$2 \text{ GeV} \leq p_T < 2.5 \text{ GeV}$

$134\,939 \pm 3184 \, \pi^0$ from

26 M minimum bias events (PbGl)
Signal/Background

- π^0 analysis limited by statistics
 - Further improvement with high p_T photon triggers
- Charged particle analysis limited by background:
 - $\delta p/p = 0.7\% \oplus 1.1\% p$ (GeV/c)
 - Background from conversion electrons hardly separable from charged π
h/π Ratios

- **Expectation (pp, e+e-):**
 - h/π ≈ 1.6
- **Only the case in peripheral collisions and above 5GeV**
- **Identified Hadrons**
 - Anomalous p/π
 - Data suggests baryon vs. meson effect (from λ,p vs φ,π)
 - Talks: F. Matathias
- **Approaches**
 - E.g. recombination of quarks in a thermal phase
Recombination

- Two competing processes for hadron production
 - Jet fragmentation
 - Recombination of 3 quarks or a quark/anti-quark pair in a densely populated phase space

- Fries et al.:
 - In case of thermalized partons fragmentation wins over recombination only above 5 GeV/c
 - Explains p/π ratio
 - “Such a phase may be appropriately called a QGP”

Fries, et al, nucl-th/0301087
also, Greco, Ko, Levai, nucl-th/0301093
\(\eta \) in Au+Au
d+Au Centrality Dependence

- Centrality Selection with BBC-South
 - Au going side
 - $3 < |\eta| < 3.9$
 - Charge sum \Rightarrow multiplicity
- N_{coll} from Glauber model

<table>
<thead>
<tr>
<th>Centrality</th>
<th>N_{coll}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20%</td>
<td>15.0 ± 1.0</td>
</tr>
<tr>
<td>20-40%</td>
<td>10.4 ± 0.7</td>
</tr>
<tr>
<td>40-60%</td>
<td>6.9 ± 0.6</td>
</tr>
<tr>
<td>60-88%</td>
<td>3.2 ± 0.3</td>
</tr>
</tbody>
</table>
Centrality Dependence π^0

- Examine nuclear modification at fixed p_T
 - Enhancement in central d+Au
 - Suppression in central Au+Au
 - Deviation from scaled pp vanishes in peripheral collisions

⇒ Strong medium effects in central Au+Au overcome initial state Cronin enhancement
Theory Comparison

- **Prediction from pQCD**
 - Tuned to pp \(\langle k_T^2 \rangle \ldots \)
 - Good qualitativ agreement with expectation from Cronin enhancement
 - Further improvement with inclusion of shadowing

- **Prediction from saturation models**
 - Fails, no suppression in central d+Au at midrapidity
 - Different rapidity regions?
Does the Enhancement Vanish at High p_T??

- R_{CP}
 - Compares Yields in central and peripheral scaled by N_{coll}
 - Many systematics cancel

- Different parts of PHENIX measure different p_T ranges of π

- Enhancement in central vanishes at high p_T